# Idaho National Laboratory

## Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method for Geothermal Reservoir Simulation

with Its Preliminary Implementation in the MOOSE Framework

#### Yidong Xia, Hai Huang, and Robert Podgorney

Department of Energy Resource Recovery & Sustainability Energy and Environment Science & Technology Directorate Idaho National Laboratory

yidong.xia@inl.gov

Presented at

2015 International Conference on Coupled Thermo-Hydro-Mechanical-Chemical (THMC) Processes in Geosystems

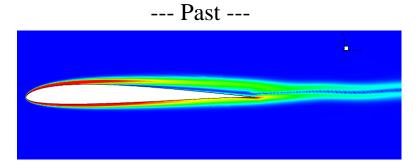
Salt Lake City, Utah, USA

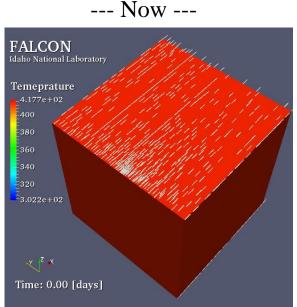
February 25 – 27, 2015



#### Who Am I?

- Current research focus
  - High-order methods for coupled THMC processes in geosystems
- PhD in Aerospace Engineering with Minor in General Mathematics
- Research interest
  - Computational fluid dynamics and heat transfer
  - High performance computing with GPU







## **Code Description**

- FALCON code
  - Stands for Fracturing And Liquid CONvection
  - Built based on INL's MOOSE framework <a href="http://www.mooseframework.com/">http://www.mooseframework.com/</a>
  - Physics-based, massively parallel, fully-coupled, finite element model for simultaneously solving multiphase fluid Flow, heat transport, and rock deformation for geothermal reservoir simulation
- Collaborative efforts
  - INL: Derek Gaston, Cody Permann, Mitch Plummer
  - U. of Utah: Luanjing Guo, Jacob Bradford, Raili Taylor, Surya Sunkavalli
  - Others: CSIRO, U. of Western Au., U. of NSW, U. of Auckland



## MOOSE Project

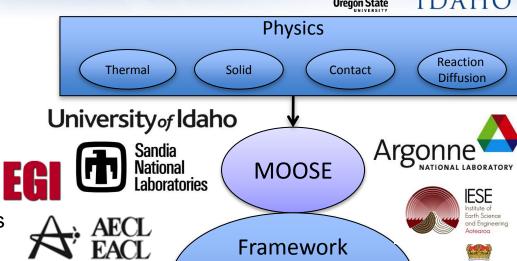








- MOOSE is an object-oriented FEM framework allowing rapid development of new simulation tools. Meets NQA-1 requirements.
- Application development focuses on implementing physics rather than numerical issues.
- Leverages multiple DOE and university developed scientific computational tools
- Used by multiple national labs, universities and industry partners
  - ~25 applications build on the framework



Mesh

Element Library

libmesh

I/O









**lassachusetts** Institute of Technology

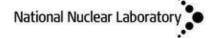








MICHIGAN



TEXAS A&M







CSIRO













#### General Capabilities of MOOSE

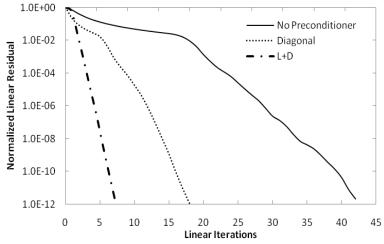
- 1D, 2D, and 3D
  - User code agnostic of dimension
- Finite Element Based, C++
  - Continuous Galerkin
  - Discontinuous Galerkin
- Fully Coupled/Fully Implicit, "Tight" and "Loose" Coupling Capabilities
- Unstructured Mesh
  - All shapes (Quads, Tris, Hexes, Tets, Pyramids, Wedges...)
  - Higher order geometry (curvilinear, etc.)
  - Reads and writes multiple formats
- Mesh and Timestep Adaptivity
- Parallel
  - User code agnostic of parallelism
- High Order
  - User code agnostic of shape functions



#### Solution Framework

- MOOSE is based on a Jacobian-Free Newton-Krylov (JFNK) nonlinear solution scheme
- JFNK is ideally suited to solution of large multiphysics systems:
  - Lack of need for Jacobian saves space and time
  - No need to find perfect analytic derivatives (which can be difficult or impossible)
- All physics are solved simultaneously in a fully implicit, fully coupled manner
  - Allows for large time steps
- MOOSE handles all coupling, simultaneously converging all equations
- JFNK uses a Krylov solver and still needs preconditioning

#### **Physics Based Preconditioning in RAT**







#### **Background**

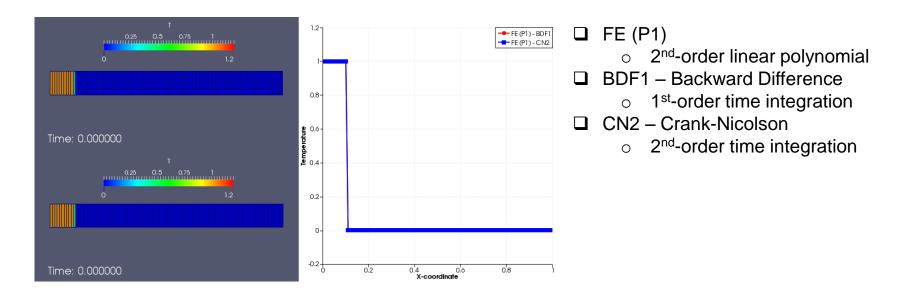
- Main numerical methods for THMC processes in geosystems
  - Finite Difference (FD)
    - Simple to implement, fast, high-order is feasible
    - © I Rigorous requirement in mesh quality; not robust for complex geometries
  - Finite Volume (FV)
    - Locally conservative; robust and fast; complex geometries
    - Loss of accuracy in non-conforming mesh and adaptive mesh refinement
  - Finite Element (FE)
    - High-order accuracy and complex geometries
    - Suited for multi-physics coupling e.g., fluid-solid
    - Not well suited for problems with direction, e.g., hyperbolic-type PDEs

No single numerical method can perfectly handle all aspects of THMC!



## Background (cont.)

- Example: 1D transport of a steep thermal front with FE
  - A minimal representation of cold fluid injection into a hot fractured zone

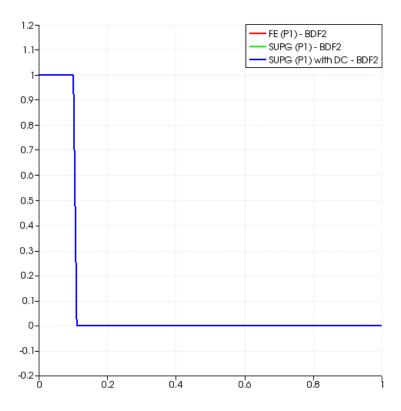


- Strong non-physical oscillations near thermal front
  - High-order temporal scheme retains oscillations in a wider region
  - Lower-order temporal scheme dissipates the errors, but also decrease accuracy



## Background (cont.)

- Exemplary stabilization approaches in the context of FE
  - Streamline Upwind Petrov Galerkin (SUPG), with discontinuity capturing

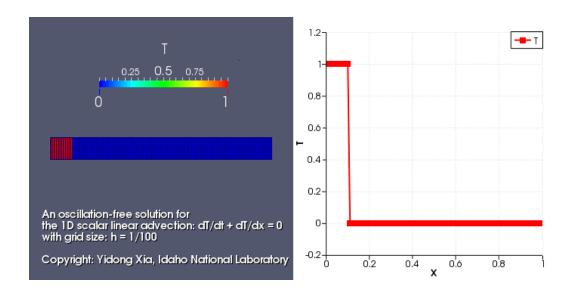


- □ Can significantly stabilize transport, but still with over- and under-shoots near the front
- ☐ Formulation strongly depends on the original PDEs, not easy to be modulated
- Parameters for tuning
- Alternative FEMs?
  - Flux-Corrected Transport (FCT)-FEM
  - Edge-based FEM
  - Entropy Viscosity Method (EVM)



#### **Motivation**

 A non-oscillatory and accurate thermal front tracking technique based on an accurate, robust and flexible numerical method

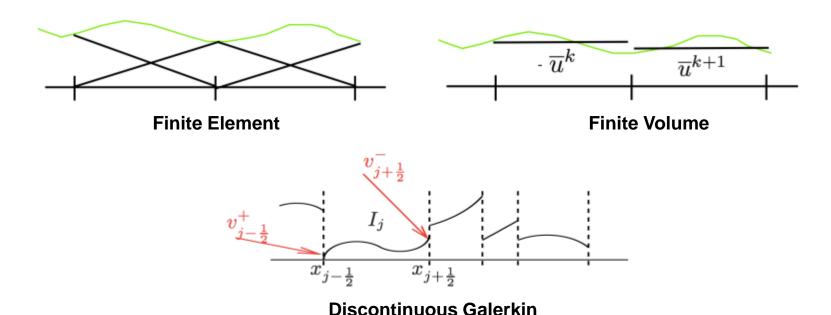


We propose a class of "**reconstructed discontinuous Galerkin**" methods – **rDG**, that combine the advantages of both Finite Element and Finite Volume methods for thermal and hydraulic modeling and simulations in geothermal reservoir



## What is Discontinuous Galerkin (DG) Method?

- DG is a variant of the standard (continuous) Galerkin FE method
  - Continuous FE requires continuity of the solution along the element interfaces (edges).
  - DG does NOT require continuity of the solution along edges



DG has more degrees of freedom (unknowns) to solve than FE



#### Features of Discontinuous Galerkin Method

- Why DG?
  - Well suited for complex geometries and non-conforming meshes.
  - Adaptive mesh refinement is easier to implement.
  - Compact and highly parallelizable
- Why not DG?
  - High computational costs (more DOFs for each element)
    - More computing time
    - More storage requirement

Later on I will prove that this is not true!



#### Choices of Basis Functions: nodal DG

The DG solution is often represented by the Lagrange basis functions

$$U\gg U_h=\mathop{\rm ad}_{j=1}^N U_jB_j$$

- In the case of linear basis, unknowns  $U_i$  happen to be on the vertices.
- Polynomial solutions depend on the shape of elements.

Q1/P1

Q2/P2

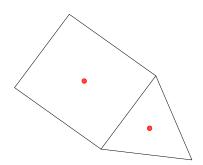


#### Choices of Basis Functions: modal DG

Taylor series expansion at the cell centroid, e.g., a P2 polynomial

$$U_h = \overline{U}B_1 + U_xB_2 + U_yB_3 + U_zB_4 + U_{xx}B_5 + U_{yy}B_6 + U_{zz}B_7 + U_{xy}B_8 + U_{xz}B_9 + U_{yz}B_{10}$$

The unknowns are cell-averaged variables and their 1<sup>st</sup> and 2<sup>nd</sup> derivatives



$$B_{1} = 1, B_{2} = x - x_{c}, B_{3} = y - y_{c}, B_{4} = z - z_{c}$$

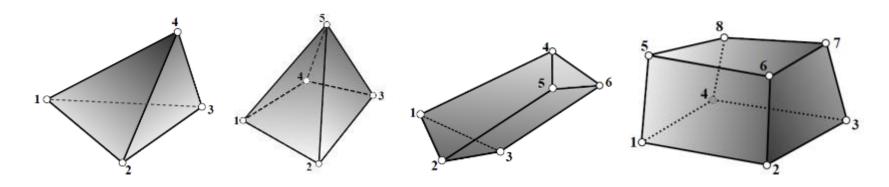
$$B_{5} = \frac{B_{2}^{2}}{2} - \int_{W_{e}} \frac{B_{2}^{2}}{2} dW, B_{6} = \frac{B_{3}^{2}}{2} - \int_{W_{e}} \frac{B_{3}^{2}}{2} dW, B_{7} = \frac{B_{7}^{2}}{2} - \int_{W_{e}} \frac{B_{7}^{2}}{2} dW,$$

$$B_{8} = B_{2}B_{3} - \int_{W_{e}} B_{2}B_{3} dW, B_{9} = B_{2}B_{4} - \int_{W_{e}} B_{2}B_{4} dW, B_{10} = B_{3}B_{4} - \int_{W_{e}} B_{3}B_{4} dW$$



## Features of the Taylor-basis DG

- Same approximate polynomial solution for any shape of elements:
  - Easy to implement on arbitrary shapes of grids
- Handily available cell-averaged variables and their derivatives
  - Easy to implement limiting / discontinuity capturing techniques
- A type of hierarchical basis
  - Easy to implement p-multigrid and p-adaptivity





## A Generic Convection-Diffusion Equation

Strong form

$$\frac{\partial U(\mathbf{x}, t)}{\partial t} + \nabla \cdot (\mathbf{V}U(\mathbf{x}, t)) - \nabla \cdot \nabla (DU(\mathbf{x}, t)) - F = 0$$
with  $U_0 = U(\mathbf{x}, 0)$  at  $t = 0$ 

- U the variable of interest, e.g., species concentration for mass transfer, temperature for heat transfer
- V the average velocity that the quantity is moving
- D the diffusivity
- F the "source/sink" term
- A linear case

$$\frac{\partial U(\mathbf{x}, t)}{\partial t} + \mathbf{V} \cdot \nabla U(\mathbf{x}, t) - D\nabla \cdot \nabla U(\mathbf{x}, t) = 0$$



#### Discontinuous Galerkin Discretization

Weak form

$$\frac{d}{dt} \int_{\Omega_{e}} U_{h} B_{i} \ d\Omega + \underbrace{\int_{\Gamma_{e}} (\mathbf{V} U_{h}) \cdot \mathbf{n} B_{i} \ d\Gamma}_{\text{Conv. Face Int.}} - \underbrace{\int_{\Omega_{e}} (\mathbf{V} U_{h}) \cdot \nabla B_{i} \ d\Gamma}_{\text{Conv. Domain Int.}} - \underbrace{\int_{\Gamma_{e}} D\nabla U_{h} \cdot \mathbf{n} B_{i} \ d\Gamma}_{\text{Diff. Face Int.}} + \underbrace{\int_{\Omega_{e}} D\nabla U_{h} \cdot \nabla B_{i} \ d\Gamma}_{\text{Diff. Domain Int.}} = 0$$

$$1 \le i \le N$$

- N the dimension of the polynomial space
- $-B_i$  the basis of polynomial function of degree p
- Treatment of non-unique interface fluxes
  - Upwind or solve a Riemann problem like in the case of Finite Volume



## Taylor-Basis DG Formulation

Take another look at the weak form, e.g., DG (P2)

$$W_e \frac{d\overline{\mathbf{U}}}{dt} + \int_{G_e} (\mathbf{V}U_h) \cdot \mathbf{n} \ dG - \int_{G_e} D\nabla U_h \cdot \mathbf{n} \ dG = 0, \ i = 1$$

DG(P0) – nothing but the 1<sup>st</sup>-order Finite Volume

$$\left[\int_{W_e} B_j B_i dW\right]_{9\times 9} \frac{d}{dt} \left[U_x, U_y, U_z, U_{xx}, U_{yy}, U_{zz}, U_{xy}, U_{xz}, U_{yz}\right]^T + \left[\mathbf{R}\right]_{9\times 1} = 0, \quad 2 \le i, j \le 10$$

The cell-averaged variable is decoupled from the derivatives

$$\int_{\mathcal{W}_a} B_1 B_i dW = 0, \quad 2 \le i \le 10$$

Finite Volume becomes a subset in Taylor-basis DG formulation!



## Hierarchically Reconstructed DG - rDG methods

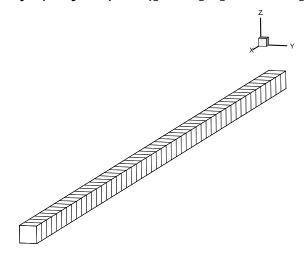
- A few of the rDG methods in the present study:
  - rDG (P0P1): 2<sup>nd</sup>-order in space
    - Step 1. Reconstruct the 1<sup>st</sup> derivatives based on P0 solution
    - Step 2. Limit the 1<sup>st</sup> derivatives using compact WENO reconstruction at P1
  - rDG (P1P1): 2<sup>nd</sup>-order in space
    - Step 1. Limit the 1<sup>st</sup> derivatives using compact WENO reconstruction at P1
  - rDG (P1P2): 3<sup>rd</sup>-order in space
    - Step 1. Reconstruct the 2<sup>nd</sup> derivatives based on P1 solution
    - Step 2. Limit the 2<sup>nd</sup> derivatives using compact WENO reconstruction at P2
    - Step 3. Limit the 1<sup>st</sup> derivatives using compact WENO reconstruction at P1

----- WENO: Weighted Essentially Non-Oscillatory schemes -----Refer to the paper for the mathematical description in detail



## **Numerical Experiments**

- Meshes for the first two examples
  - 3D simulation of 1D problems on hexahedral grids
  - Domain bounded by (x, y, z) = ([0, 1], [0, 0.01], [0, 0.01])



- High-order time integration schemes are applied
- All the examples are conducted in the 3D coordinate system

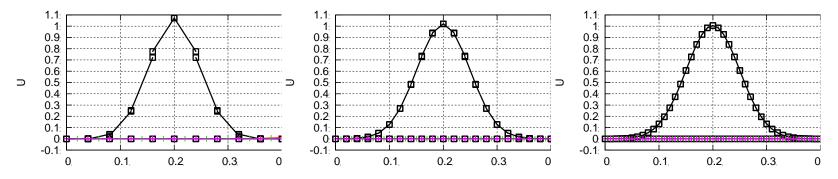


## Example 1. Gaussian Hump in 1D

A nonlinear wave profile advected by the transport equation:

$$U(x,0) = \exp(-b(x-x_0)^2)$$
 for  $x \hat{l}$  [0,1]

- The damping coefficient  $\beta$  = 200, and the initial location  $x_0$  = 0.2. All the computations were started at  $t_0$  = 0 and terminated at t = 0.6.

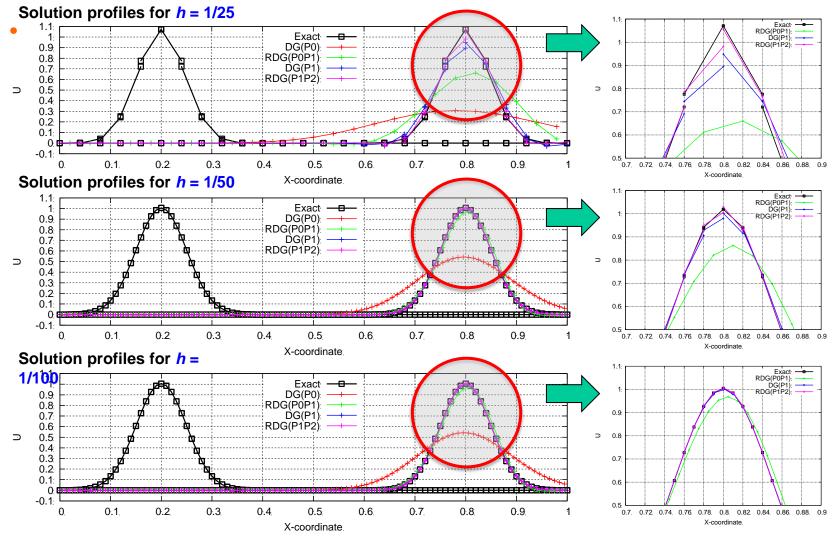


Initial conditions represented by **exact** linear DG solution for h = 1/25, 1/50 and 1/100.

Objective: error analysis on a smooth convective problem



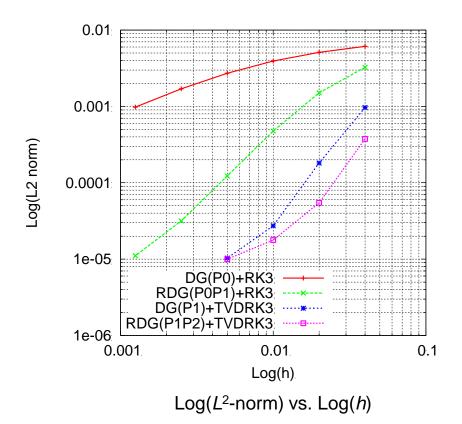
## Example 1. Gaussian Hump in 1D (cont.)





## Example 1. Gaussian Hump in 1D (cont.)

Spatial error analysis



0.01 0.001 0.0001 1e-05 DG(P0)+RK3 RDG(P0P1)+RK3 DG(P1)+TVDRK3 RDG(P1P2)+TVDRK3 1e-06: 100. 200. 300. 400. 500. 600 700 800 Nelem

 $Log(L^2$ -norm) vs. Nr. of elements

Log(L2 norm)



#### Example 2. Step Function in 1D

Initial conditions

Left state: 
$$U = 1.0$$
,  $V = (1, 0, 0)$  for  $x \in 0$   
Right state:  $U = 0$ ,  $V = (1, 0, 0)$  for  $0 \in x \in 1$ 

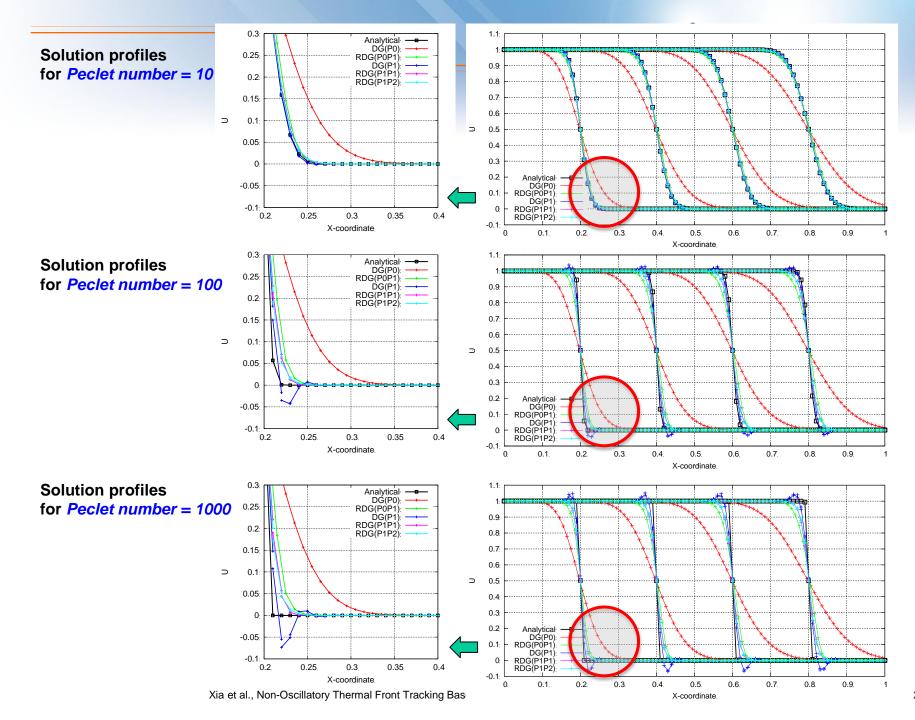
Analytical solution to this initial-value-problem

$$U(x,t) = \int_{-\frac{1}{4}}^{0} \frac{1}{\sqrt{4\rho Dt}} \exp \frac{\partial x}{\partial t} - \frac{(x - V_x t - x)^{\frac{1}{2}}}{4Dt} \frac{\partial x}{\partial t}$$

$$\frac{1.1}{0.9} \frac{0.8}{0.8} \frac{0.7}{0.6} \frac{0.7}{0.4} \frac{0.9}{0.3} \frac{0.2}{0.1} \frac{0.9}{0.1} \frac{0.1}{0.2} \frac{0.3}{0.3} \frac{0.2}{0.1} \frac{0.1}{0.2} \frac{0.3}{0.3} \frac{0.4}{0.5} \frac{0.5}{0.6} \frac{0.6}{0.7} \frac{0.8}{0.8} \frac{0.9}{0.9} \frac{1}{1}$$

$$\frac{1.1}{0.9} \frac{0.1}{0.9} \frac{0.1}{0.$$

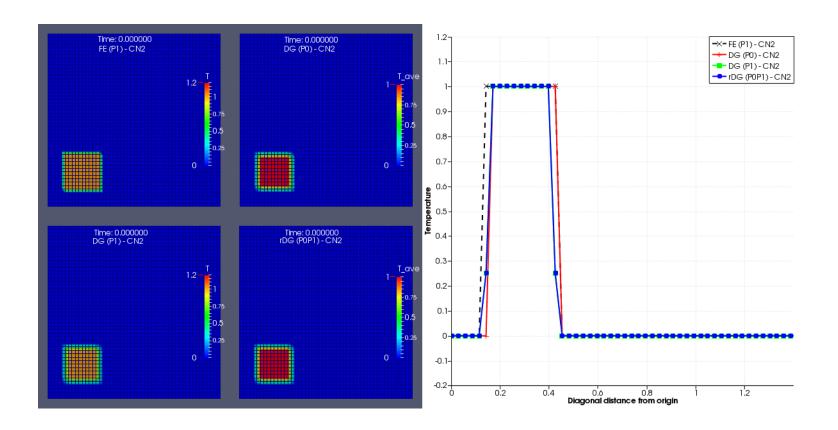
Useful notations: DG(P0) | rDG(P0P1) | DG(P1) | rDG(P1P1) | rDG(P1P2)





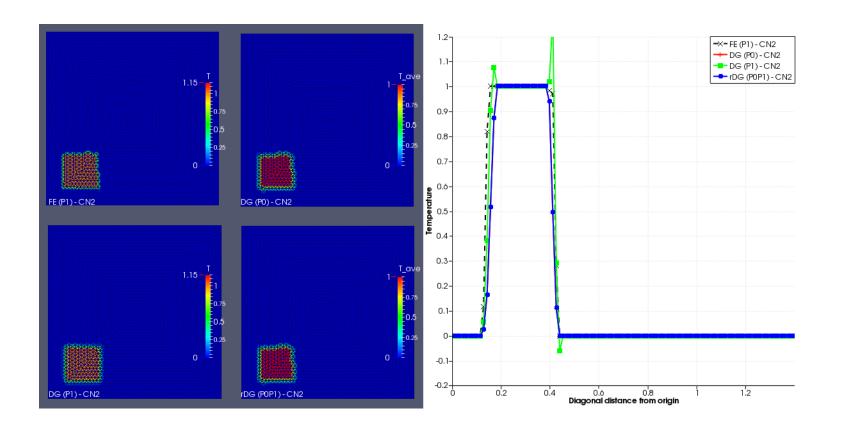
## Example 3. Transport of Square Wave in 2D

Quadrilateral meshes





## Example 3. Transport of Square Wave in 2D (cont.) Triangular meshes

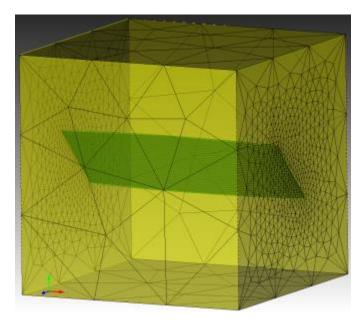




## Example 4. Cold Water Injection in 3D

- Injection of cold water through a fractured rock zone
  - Designed Peclet number = 1000 (strongly convective)
  - Domain bounded by (x, y, z) = ([-0.5, 0.5], [-0.5, 0.5], [-0.5, 0.5])
  - Pressure-temperature based thermo-hydro formulation in porous media

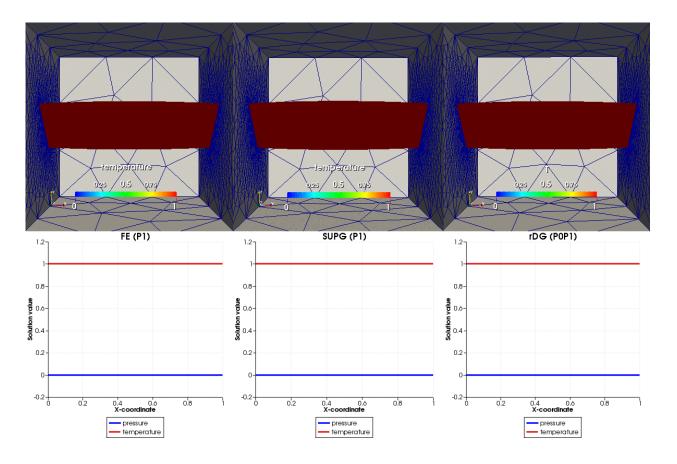
$$\begin{cases} \frac{\partial \Gamma}{\partial t} + \nabla \cdot \left( -\Gamma \frac{k}{m} \nabla p \right) = 0 \\ \left[ f \Gamma c_w + (1 - f) \Gamma_r c_r \right] \frac{\partial T}{\partial t} - \nabla \cdot \left( K_m \nabla p \right) + c_w \mathbf{q} \cdot \nabla T = 0 \end{cases}$$





## Example 4. Cold Water Injection in 3D (cont.)

 Pressure gradient-induced thermal transport of cold water in a hot fractured rock zone





#### Conclusion

- A class of reconstructed discontinuous Galerkin methods for thermal and hydraulic (TH) modeling and simulation in porous media
  - Effective thermal front tracking without non-physical oscillations
  - Sufficient accuracy
- Limitations
  - Solid mechanics (Finite Element is still the choice here)
- Future work
  - two-phase flow (water and steam)
  - Chemically reactive transport (hyperbolic-type equations)



#### Acknowledgment

 This work was supported by the U.S. Department of Energy, under a DOE Idaho Operations Office Contract. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.